sexta-feira, 15 de março de 2019






x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



.
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


,
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
x
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D
Sendo que,
 (primeira lei da termodinâmica) com o trabalho  temos ,por se tratar de um processo a volume constante.
onde:
  •  é o calor absorvido ou cedido por uma amostra de  mols de um gás;
  •  é a variação de temperatura resultante;
  •  é a variação de energia interna.
Para um gás monoatômico ideal,













Capacidade térmica ou capacidade calorífica (usualmente denotada pela letra ) é a grandeza física que determina a relação entre a quantidade de calor fornecida a um corpo e a variação de temperatura observada neste. [1]
A capacidade térmica caracteriza o corpo, e não a substância que o constitui. A capacidade térmica é uma propriedade extensiva, ou seja, proporcional à quantidade de material presente no corpo. Com isso, dois corpos compostos pela mesma substância porém com massas diferentes possuem diferentes capacidades caloríficas.
Grandezas derivadas que especificam a capacidade térmica como uma propriedade intensiva existem, sendo então uma característica da substância. Essas são: o calor específico, que é a capacidade térmica por unidade de massa da substância, e o calor específico molar, resultante da relação entre a capacidade térmica e o número de mols presentes. Ocasionalmente, pode ser usado o calor específico volumétrico (por unidade de volume).
A temperatura reflete a energia cinética média das partículas na matéria, enquanto calor é a energia térmica em trânsito das regiões de maior para aquelas com menor temperatura. A energia térmica transmitida como calor é armazenada como energia cinética translacional em átomos e rotacional em moléculas. Adicionalmente, parte da energia térmica pode ser convertida em energia potencial associada aos modos de vibração, de maior energia, nas ligações interatômicas. Translação, rotação e as energias cinética e potencial associadas à vibração representam os graus de liberdade do movimento que contribuem classicamente à capacidade térmica. Em temperaturas suficientemente altas, cada grau de liberdade contribui igualmente com o calor específico (de acordo com o teorema da equipartição, a contribuição de cada um no calor específico molar é 1/2 R), de tal forma que o calor específico dos metais e muitos sólidos a temperatura ambiente aproxima-se a 25 joules por kelvin para cada mol de átomos, dado pela lei de Dulong-Petit. Devido a fenômenos da mecânica quântica, alguns graus de liberdade podem não ser atingidos ou estar disponíveis parcialmente, de forma que o calor específico é uma fração do máximo.

    Quantidades extensivas e intensivas

    A capacidade térmica (símbolo C) é dada pelo quociente entre a energia fornecida sob a forma de calor e o aumento resultante na temperatura do corpo. Matematicamente,
    A unidade usada no SI é J/K (Joule por Kelvin). Por motivos históricos, é comum o uso da unidade caloria por graus Celsius (cal/ºC).
    Para muitas finalidades teóricas e experimentais, é mais conveniente relatar-se a capacidade térmica como uma propriedade intensiva, isto é, intrínseca da substância. Isso é mais comumente feito expressando-se a capacidade térmica por massa unitária. Essa grandeza é o calor específico, denotado pela letra minúscula c. As unidade SI é o joule por quilograma e kelvin, símbolo J/(kg.K),[2] sendo também comum a unidade usual cal/g.ºC (uma caloria foi originalmente definida como o calor necessário para aquecer 1 g de água de 14,5 ºC a 15,5 ºC).
    Em muitas circunstâncias a unidade mais conveniente para especificar a quantidade de uma substancia é o mol, definido como sendo a quantidade de unidade de matéria que contem um número de unidades elementares igual ao número de átomos de carbono em 12 gramas, dado por aproximadamente 6,02 x 1023) (número de Avogadro). Assim, por exemplo um mol de hélio significa um número de aproximadamente 6,02 x 1023 átomos de hélio. A relação entre massa e número de mols para uma dada substância é chamada massa molar.
    Nesses casos, quando a quantidade de substância é expressa em mols, utiliza-se o chamado calor específico molar (unidade no SI: J/(mol.K)). Este é expresso como sendo a capacidade térmica por mol, e não mais por massa unitária.

    Termodinâmica[editar | editar código-fonte]

    A capacidade térmica da maioria dos sistemas não é constante. Ao invés disso, ela depende em algum grau das variáveis de estado (da própria temperatura, assim como da pressão e volume) do sistema termodinâmico, além do processo pelo qual o aquecimento ocorre. Com isso, é possível realizar diferentes medições da capacidade térmica, sendo mais comumente feitas a pressão constante e a volume constante.
    A capacidade térmica a pressão constante é geralmente um pouco maior do que a volume constante, sendo a afirmação verdadeira para materiais com coeficientes de dilatação volumétrico positivos. Materiais com dilatação anômala, como a água entre 0 °C e 4 °C, não obedecem à regra anterior; nestes casos o calor específico a volume constante é então um pouco maior do que o calor específico a pressão constante. Em virtude do aumento de volume associado à dilatação térmica, parte da energia fornecida na forma de calor é usada para realizar trabalho contra o ambiente a pressão constante e não para aumentar a temperatura em si; o aumento de temperatura experimentado para um sistema à pressão constante é pois menor do que aquele que seria experimentado pelo mesmo sistema imposto o volume constante uma vez mantida a mesma transferência de energia na forma de calor. No caso da capacidade térmica a volume constante, toda a energia recebida na forma de calor é utilizada para elevar a temperatura do sistema, o que faz com que  - em virtude de sua definição - seja um pouco menor. A diferença entre os dois é particularmente importante em gases; em sólidos e líquidos sujeitos a pequenas variações de volume frente às variações de temperatura, os valores dos dois na maioria das vezes se confundem por aproximação. Em análise teórica e de precisão, contudo, é importante a diferenciação dos dois.
    De forma análoga com o que ocorre com as capacidades térmicas, o calor específico e o calor específico molar também dependem do processo ao qual a substância é submetida; de mesma forma, definem-se as quantidades a pressão constante e a volume constante.

    Capacidades térmicas[editar | editar código-fonte]

    primeira lei da termodinâmica estabelece que . O trabalho realizado pelo gás pode ser escrito em função da pressão do volume, e dividindo a equação por uma diferencial de temperatura obtém-se a capacidade térmica:
    Por essa última relação, nota-se que a capacidade térmica depende do processo pelo qual o calor é cedido à substância. Para o caso da capacidade térmica a volume constante, a variação no volume é nula e da relação anterior,
    .
    Nesse caso, todo o calor fornecido é transformado em energia interna pelo sistema, já que nenhum trabalho é realizado. Já a capacidade térmica a pressão constante é dada por
    O potencial  é uma função de estado, denominada entalpia do sistema. [3]
    As capacidades térmicas a pressão constante e a volume constante são relacionadas por: [4]
    ,
    onde  é o coeficiente de expansão volumétrico e  é a compressibilidade isotérmica.

    Calor específico molar a volume constante[editar | editar código-fonte]

    O calor específico molar a volume constante é definido como:
    Sendo que,
     (primeira lei da termodinâmica) com o trabalho  temos ,por se tratar de um processo a volume constante.
    onde:
    •  é o calor absorvido ou cedido por uma amostra de  mols de um gás;
    •  é a variação de temperatura resultante;
    •  é a variação de energia interna.
    Para um gás monoatômico ideal,
















    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





    Corrente elétrica é o fluxo ordenado de partículas portadoras de carga elétrica ou o deslocamento de cargas dentro de um condutor, quando existe uma diferença de potencial elétrico entre as extremidades. Tal deslocamento procura restabelecer o equilíbrio desfeito pela ação de um campo elétrico ou outros meios (reações químicas, atrito, luz, etc.)[1].
    Sabe-se que, microscopicamente, as cargas livres estão em movimento aleatório devido à agitação térmica. Apesar desse movimento desordenado, ao estabelecermos um campo elétrico na região das cargas, verifica-se um movimento ordenado que se apresenta superposto ao primeiro. Esse movimento recebe o nome de movimento de deriva das cargas livres.
    Raios são exemplos de corrente elétrica, bem como o vento solar, porém a mais conhecida, provavelmente, é a do fluxo de elétrons(português brasileiro) ou eletrões (português europeu) através de um condutor elétrico, geralmente metálico.
    A intensidade I da corrente elétrica é definida como a razão entre o módulo da quantidade de carga ΔQ que atravessa certa secção transversal (corte feito ao longo da menor dimensão de um corpo) do condutor em um intervalo de tempo Δt.
    A unidade padrão no SI para medida de intensidade de corrente é o ampère (A). A corrente elétrica é também chamada informalmente de amperagem. Embora seja um termo válido na linguagem coloquial, a maioria dos engenheiros eletricistas repudia o seu uso por confundir a grandeza física (corrente eléctrica) com a unidade que a medirá (ampère). A corrente elétrica, designada por I , é o fluxo das cargas de condução dentro de um material. A intensidade da corrente é a taxa de transferência da carga, igual à carga dQ transferida durante um intervalo infinitesimal dt dividida pelo tempo.

    Denominamos corrente elétrica a todo movimento ordenado de partículas eletrizadas. Para que esses movimentos ocorram é necessário haver tais partículas − íons ou elétrons − livres no interior dos corpos.
    Corpos que possuem partículas eletrizadas livres em quantidades razoáveis são denominados condutores, pois essa característica permite estabelecer corrente elétrica em seu interior.
    Nos metais existe grande quantidade de elétrons livres, em movimento desordenado. Quando se cria, de alguma maneira, um () no interior de um corpo metálico, esses movimentos passam a ser ordenados no sentido oposto ao do vetor campo elétrico (), constituindo a corrente elétrica.
    Nas soluções eletrolíticas existe grande quantidade de cátions e ânions livres, em movimento é desordenado. Quando se cria, de alguma maneira, um campo elétrico () no interior de uma solução eletrolítica, esses movimentos passam a ser ordenados: o movimento dos cátions, no sentido do vetor campo elétrico (), e o dos ânions, no sentido oposto. Essa ordenação constitui a corrente elétrica.
    Nos gases ionizados existe grande quantidade de cátions e elétrons livres, em movimento desordenado. Quando se cria, de alguma maneira, um campo elétrico () no interior de um gás ionizado, esses movimentos passam a ser ordenados: o movimento dos cátions, no sentido do vetor campo elétrico (), e o dos elétrons, no sentido oposto. Essa ordenação constitui a corrente elétrica.
    Tipos de corrente contínua
    Com a finalidade de facilitar o estudo das leis que regem os fenômenos ligados às correntes elétricas, costumamos adotar um sentido convencional para a corrente elétrica[2], coincidente com o sentido do vetor campo elétrico () que a produziu.
    Consequentemente, esse sentido será o mesmo do movimento das partículas eletrizadas positivamente e oposto ao das partículas eletrizadas negativamente.

    Corrente contínua[editar | editar código-fonte]

    Ver artigo principal: Corrente contínua
    Corrente contínua (CC ou DC - do inglês direct current) é o fluxo ordenado de cargas elétricas no mesmo sentido. Esse tipo de corrente é gerado por baterias de automóveis ou de motos (6, 12 ou 24V), pequenas baterias (geralmente de 9V), pilhas (1,2V e 1,5V), dínamoscélulas solares e fontes de alimentação de várias tecnologias, que retificam a corrente alternada para produzir corrente contínua.

    Corrente alternada[editar | editar código-fonte]

    Ver artigo principal: Corrente alternada
    Forma de onda da corrente alternada.
    Corrente alternada (CA ou AC - do inglês alternating current) é uma corrente elétrica cujo sentido varia no tempo, ao contrário da corrente contínua cujo sentido permanece constante ao longo do tempo. A forma de onda usual em um circuito de potência CA é senoidal por ser a forma de transmissão de energia mais eficiente. Entretanto, em certas aplicações, diferentes formas de ondas são utilizadas, tais como triangular ou ondas quadradas. Enquanto a fonte de corrente contínua é constituída pelos pólos positivo e negativo, a de corrente alternada é composta por fases (e, muitas vezes, pelo fio neutro).

    Sentido da corrente[editar | editar código-fonte]

    De acordo com a lei de Ampère, uma corrente elétrica produz um campo magnético.
    No início da história da eletricidade definiu-se o sentido da corrente elétrica como sendo o sentido do fluxo de cargas positivas[3], ou seja, as cargas que se movimentam do pólo positivo para o pólo negativo. Naquele tempo nada se conhecia sobre a estrutura dos átomos. Não se imaginava que em condutores sólidos as cargas positivas estão fortemente ligadas aos núcleos dos átomos e, portanto, não pode haver fluxo macroscópico de cargas positivas em condutores sólidos. No entanto, quando a física subatômica estabeleceu esse fato, o conceito anterior já estava arraigado e era amplamente utilizado em cálculos e representações para análise de circuitos. Esse sentido continua a ser utilizado até os dias de hoje e é chamado sentido convencional da corrente.
    Em qualquer tipo de condutor, este é o sentido contrário ao fluxo líquido das cargas negativas ou o sentido do campo elétrico estabelecido no condutor. Na prática qualquer corrente elétrica pode ser representada por um fluxo de portadores positivos sem que disso decorram erros de cálculo ou quaisquer problemas práticos.
    sentido real da corrente elétrica depende da natureza do condutor.
    A corrente elétrica não é exclusividade dos meios sólidos - ela pode ocorrer também nos gases e nos líquidos. Nos sólidos, as cargas cujo fluxo constitui a corrente real são os elétrons livres. Nos líquidos, os portadores de corrente são íons positivos e íons negativos. Nos gases, são íons positivos, íons negativos e elétrons livres. A corrente elétrica que se estabelece nos condutores eletrolíticos e nos condutores gasosos (como a que surge em uma lâmpada fluorescente) é denominada corrente iônica[2]
    O sentido real é o sentido do movimento de deriva das cargas elétricas livres (portadores). Esse movimento se dá no sentido contrário ao do campo elétrico se os portadores forem negativos (caso dos condutores metálicos), e no mesmo sentido do campo, se os portadores forem positivos. Mas existem casos em que verificamos cargas se movimentando nos dois sentidos. Isso acontece quando o condutor apresenta os dois tipos de cargas livres (condutores iônicos, por exemplo).
    Nesses casos, não são só os portadores de carga negativa que entram em movimento, mas também os portadores de carga positiva: os íons também entram em movimento. Por exemplo: se, numa solução iônica, são colocados dois eletrodos ligados a uma bateria, um eletrodo adquire carga positiva, e outro, carga negativa. Com isso, o movimento dos íons negativos e dos elétrons se dará no sentido do eletrodo positivo, enquanto o movimento dos íons positivos ocorrerá no sentido do eletrodo negativo.
    O mesmo ocorre em meio gasoso, no caso dos gases ionizados. A intensidade I da corrente elétrica também é determinada pela mesma equação apresentada acima. A diferença é que, nesse caso, a quantidade de carga elétrica será dada pela soma de cargas positivas e negativas.

    Transferência de Cargas[editar | editar código-fonte]

    Fio metálico a conduzir uma corrente I de B para A.
    Por convenção, usa-se o sentido da transferência de cargas positivas para definir o sentido da corrente elétrica. Assim, se as cargas de condução forem eletrões, como acontece num metal, o sentido da corrente será oposto ao sentido do movimento dos eletrões. Por exemplo, o fio metálico na figura transporta corrente elétrica de B para A. Num determinado intervalo de tempo, a carga dos eletrões transportados de A para B é  ; isso implica que a carga dos protões que se combinaram com os eletrões em B foi  , e essa é também a carga dos protões que ficaram em A após a partida dos eletrões.[4]
    Consequentemente, é equivalente considerar que houve transporte de carga  de A para B, ou transporte de carga de B para A. A corrente I é definida no sentido do transporte da carga positiva.
    A carga total transferida durante um intervalo de tempo é o integral da corrente I , nesse intervalo:
    No sistema internacional de unidades a unidade usada para medir a corrente elétrica é o ampere, designado pela letra A, que equivale à transferência de uma carga de um coulomb cada segundo:

    A velocidade de deriva[editar | editar código-fonte]

    Ao estabelecermos um campo elétrico em um condutor verificamos, superposto ao movimento aleatório das cargas livres, um movimento de deriva dessas cargas. Em metais, condutores mais conhecidos, temos elétrons como portadores de carga livres. Essas partículas oscilam aleatoriamente a velocidades médias da ordem de 105 a 106 m/s. No entanto o movimento de deriva se dá a uma taxa da ordem de 10-3m/s (na situação de máxima densidade de corrente). Ou seja, quando temos a máxima densidade de corrente permitida pelas normas técnicas a velocidade de deriva dos elétrons livres é cerca de 2 mm/s[5].

    Densidade de corrente[editar | editar código-fonte]

    A corrente elétrica φ se relaciona com a densidade de corrente elétrica j através da fórmula
    onde, no SI,
    φ é a corrente medida em ampères
    j é a "densidade de corrente" medida em ampères por metro quadrado
    A é a área pela qual a corrente circula, medida em metros quadrados
    A densidade de corrente é definida como:
    onde
    n é a densidade de partículas (número de partículas por unidade de volume)
    x é a massa, carga, ou outra característica na qual o fluxo poderia ser medido
    u é a velocidade média da partícula em cada volume
    Densidade de corrente é de importante consideração em projetos de sistemas elétricos. A maioria dos condutores elétricos possuem uma resistência positiva finita, fazendo-os então dissipar potência na forma de calor. A densidade de corrente deve permanecer suficientemente baixa para prevenir que o condutor funda ou queime, ou que a isolação do material caia. Em superconductores, corrente excessiva pode gerar um campo magnético forte o suficiente para causar perda espontânea da propriedade de supercondução.

    Métodos de medição[editar | editar código-fonte]

    Para medir a corrente, pode-se utilizar um amperímetro. Apesar de prático, isto pode levar a uma interferência demasiada no objeto de medição, como por exemplo, desmontar uma parte de um circuito que não poderia ser desmontada.
    Como toda corrente produz um campo magnético associado, podemos tentar medir este campo para determinar a intensidade da corrente. O efeito Hall, a bobina de Rogowski e sensores podem ser de grande valia neste caso.

    Lei de Ohm[editar | editar código-fonte]

    Ver artigo principal: Lei de Ohm
    Para componentes eletrônicos que obedecem à lei de Ohm, a relação entre a tensão (V) dada em volts aplicada ao componente e a corrente elétrica que passa por ele é constante. Esta razão é chamada de resistência elétrica e vale a equação:[6]










    x
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    Aquecimento Joule, também conhecida como aquecimento óhmico, é o processo onde a passagem de uma corrente elétrica em um material condutor solta calor. Foi estudado pela primeira vez por James Prescott Joule em 1841. Joule inseriu arame dentro de uma massa fixa de água, e mediu o aumento de temperatura causado por uma corrente de valor conhecido, em 30 minutos. Variando a corrente e o comprimento do arame dentro da água, Joule deduziu que o calor produzido é proporcional ao quadrado da corrente mutiplicado pela resistência elétrica do arame:[1]

    Resistência[editar | editar código-fonte]

    As resistências de aquecimento convertem energia elétrica em calor por meio do processo de aquecimento descoberto por James Prescott Joule em 1841; ao fazer circular uma corrente elétrica por um condutor observou que se libertava calor devido à resistência oferecida pelo condutor.
    Atualmente as resistências de aquecimento são utilizadas para uma infinidade de aplicações. A grande maioria delas é fabricada com um fio de uma liga de níquel (80%) e crómio(20%). Esta liga suporta temperaturas muito altas (1000 C), é resistivo (condição necessária para produzir calor), é muito resistente aos impactos e é inoxidável.













    teoria da relatividade categorial Graceli

    ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D











    NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].